Sugar swap: Human brain converts glucose into fructose


THE human brain can produce the sugar fructose, a new small study finds. Researchers found that the brain can convert one form of sugar, called glucose, into another form, called fructose. People who have too much fructose in their diet may face an increased risk of conditions such as type 2 diabetes and obesity.
Previous research has suggested that fructose and glucose act differently in the brain. For example, studies have shown that glucose sends signals of fullness to the brain, but fructose does not, lead study author Dr. Janice Hwang, an assistant professor of medicine at Yale University, said in a statement. But although it was clear that fructose was found in the brain, a lingering question remained: How does the sugar get into the brain, particularly in high concentrations? [10 Things You Didn’t Know About the Brain]
Earlier work showed that glucose enters the brain by crossing the blood-brain barrier, the researchers wrote in the study. And although fructose is also thought to be able to cross this barrier, the sugar is found in “exceedingly” low concentrations in the blood, because it is broken down by the liver, according to the study. This means that very little fructose would be available to cross into the brain.
In the new study, published today (Feb. 23) in the journal JCI Insight, eight healthy people had their brains scanned while they received intravenous infusions of glucose over a 4-hour period. The scans measured the levels of glucose and fructose in the participants’ brains using a special type of imaging.
During the 4-hour period, the researchers also periodically took blood samples to measure the participants’ blood glucose levels, and adjusted the infusions to make sure that the participants maintained a specific amount of sugar in the blood. In addition, separate blood samples were taken at five points during the experiment to measure the levels of fructose in the blood.
The researchers found that as glucose levels increased in both the blood and the brain, fructose levels in the brain also increased — but after a slight delay. For example, the researchers observed an increase in brain glucose levels 10 minutes into the experiment but did not see the increase in brain fructose levels until 20 minutes in. Fructose levels in the blood, however, didn’t increase until much later in the experiment — 180 minutes in — and at that point, they rose only slightly, the researchers found.
The findings “show for the first time that fructose can be produced in the human brain,” Hwang said. Previous studies have shown that fructose can be produced in animals’ brains, she noted.

Share this post

    scroll to top